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ABSTRACT

A theory for spinor Regge trajectories is done on the
basis of the multiperipheral model. A set of linear integral
equations for the corresponding high energy amplitudes 1is

X
obtained, which shows the characteristic s (t)

behaviour.
The eigenvalue problem presents new features which are direct-
1y connected with the existence of spin. Indeed, there are
two dominant trajectories, one being the complex conjugate
of the other. In the weak coupling limit, explicit express-
ions for the trajectories are given :  they are real in the
bound state region (t > 0) and coincide for t = 0. The
relation of our results and the properties of bound states is
discussed., The complex conjugate character of the trajecto-
ries in the diffractive region is found to be related to the
existence of two parity bound states for any particular total

angular momentum.
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1. INTRODUCTION

. 1 a4 . N
Recently Gribov ) has studied the high-energy behaviour of backward
pion-nucleon scattering, assuming that 1t is dominated by the exchange

of a Regge pole Zsee Fig. l/ which must have fermion characteristics.

He derived the properties of the Regge pole trajectories using the
analytic properties of the scattering amplitudes suggested by the
Mandelstam representation and the hypothesis that the trajectories are
real in the bound state region. He showed that in the physical region
for backward scattering there will be two complex conjugate Regge
trajectories, which coincide when the (crossed) momentum transfer (%)

is zero.

The fact that the nucleon spin can give rise to new analytic pro-
perties of the Regge trajectories seems surprising at first sight.
One can therefore ask, first, whether these properties are obtained in
alternative approaches to the high-energy behaviour, and, secondly, to

what extent the spin is responsible for the trajectories being complex.

2)

the asymptotic properties of scattering amplitudes starting from a

Recently, a relativisitic theory was proposed for investigating

model for inelastic processes at high energies. This theory predicted

the Regge behaviour for two-body processes. The aim of this paper is

to use this model to examine the exchange of a spinor Regge pole.
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The theory in question (multiperipheral model) consists in computing
the sum of the ladder graphs shown in Pig. 2, by obtaining an integral

*)

equation for the sum o
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In Fig. 2 a pion (dotted line) and a nucleon (full line) exchange a
series of low-energy systems. In the scalar case (paper I), the
asymptotic integral equation for the absorptive amplitude allowed

Lol (%)

eigenvalue problem. Moreover, the integral equation in question, when

solutions of the form . The function ol (%) was given by an

; ]
continued to the bound state region, coincides exactly (when of was an
integer) with the Bethe-Salpeter equation for bound state of angular

momentum O< o

This fact allowed us to understand, besides the asymptotic pioperties

of scattering, the relation of these with the bound state problem.

*)

We refer to paper I for the justification and the physical
meaning of the theory as well as for the notation and details
of the method.



In the particular case of the weak coupling limit, an explicit

3)

method of solution of the eigenvalue problem was obtained , dncluding

a definite expression for 0<(t).

We shall show in the following how all these features are easily
extended for the spin case in which we are interested. The eigenvalue
problem will present new features which are directly connected with the
existence of the spin. Indeed we find two types of solution 0(+ and
A~ which are related by ol +(VF%) = ol (- /t). This relation containe
already the Gribov rcsult. In particular, we shall obtain the dominant tra-
Jectories explicitly in a weak coupling approximation. There are indeed two
complex conjugate trajectories in the physical region for backward T N
scattering; and these trajectories become real and inequal in the

region of 7T N bound states.

IT. INTEGRAL EQUATION FOR THE ABSORPTIVE AIPLITUDE

Following the discussion given in the introduction, the intepgral
equation for the absorptive NN — 7T amplitude N (plql’p2q°) can
o~

be represented graphically as :

Pig. 3

where p's represent nucleon momenta ang q's the pion ones.
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In order to solve the integral equation, we shall allow the nucleon

(pl) and the pion (ql) to be virtual. Defining

S= (001,-(),)2
(.__ (Pz‘*“?z)z

,}/z:-v 7,2: - U

the integral equation is

[\4 (P',%}Fz,?z) = 7/\63 JE6-5,) + Eg ;9 @i— M (f)quz: )J[V{’: S]
| 602/ )

For simplicity we have considered the Born approximation to be

\7 R: 7/\(; 0?5“‘30)

which corresponds to the exchange of a scalar particle with mass VFEO
coupled with the nucleon and the pion with coupling constants ¢ and g
respectively. In other words, we are considering the ladded approximation
for the NN — 77 amplitude for an interaction Hamiltonian

H' = GLP%W+ g 50'"_2(/ M 1s a matrix in the spin space of the nucleon.
Let us develop it in terms of ianvariant combinations of J/ matrices.
In doing so, we note that eventually we shall be interested only in the
matrix elements of I Dbetween spinors ﬁ(pl) and u(p2) representing
the incoming nucleon and antinucleon, respectively; these spinor
satisfy (ﬁz-m)u(pz) = 0 and ﬁ(pl)(ﬁl—m) = 0 when also the nucleon
Py is on the mass shell. In general, we ghall have four”independent

invariants, we choose to be :
0=
Ov=

Os = - (2)
Ou = (r-mlg7



so that :

4
Mpaip2)= 2 CLGuvit) Orlpgy) )

On the mass shell we have the identification with the usual definition

Y <

A= F A= A
@ ‘,Z,,,B Q (4)

The integral equation can now be written as

. ,
S oA - .. Co (lelucte’
2 Qelswit) Glpge) = =7 @0? o)+ =8 7S )

4
) Qpeivn [l duips i p o 0V 045
J= !

*
Ia order to obtain equations for the Czi we must expand ) (ﬁ+m)oj(p,q2)

in terms of the invariants Oi(pl’q2)° We have 3

*)

To accompligh this expansion, one must be able to express p

in terms of P19Pssdq and dye However, by momentun conse.va-
tion, only three of P19P5r4y54, are independent and to expand p
we mugt introduce a vector = orthogonal to these three. It is
easy to sec that apart from the factor (f+m) OJ(p,qz) the in-
tegrand in Eq. (5) is symmetric in the component of p in the
direction of 1r; hence terms linear in r integrate to zero.
Using this result, and the fact that Py is on the mass shell
one obtains the expansion of (ﬁ+m) 0. (p,qz) in terms of the

0. (pl’q2) /and verify that no new 1nvar1ants are necessapz/
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6.

In the asymptotic limit introduced ium I, namely s large, s' ranging
from low values up to order s, while masses u,v,u',v' and t are

of the order m, the coefficients of the expansion are

fw/§+X+y ﬁ-wvf, ,@;%VA )

f /m(wx—g) 0 | ,(,,;vwa_)

kj (7)

where

)7 - l('~t//¢a/+)<(_z‘+‘/-14/ (&)
R ¢+

. 1
5]
and X = —.
IS

Equating the coefficients of the different invariants, the integral

equations in the asymptotic limit are

Q/./S,u,(r,é ( IO/XO/QV/V Z( ("’Valrx//a/(su )
¢ ) ‘% (lf/()(v ”ML)J,

(9)
K (av i/ x;8)



where K 1s the kernel one obtains in the gscalar case

Kiewsizer= [l GELRT o e S T [175) v 2
(10)

Pz - f(1-x)

4

We note that the integral equations are invariant under the translation

s —> cs aund s' —> cs'; therefore a general solution will be

A (s0,t) = %/W// R

(11)

Introducing this solution in the intepral equation (9) we obtain the

following system of four coupled integral equations for the ?f

» O((L) f (/u U(/X((

- 1/ fV'
5/75 (V (12)

Kloyoivin:t) }j(" )

This system of linear homogeneous Fredholm equations is a typical
eigenvalue problen, whose solubtion will give us both C% (t) aind
Vi. The solution of the system can be simplified by noting that it
can be split into two uncoupled systems of two integral equations for

the following combinations of the functions

b ¥l
d% yf - M;+ﬁ0 ﬁ?
A +/I/F-WW4
461 = Vg - (UZ*”&’Z?

i

"

(13)

I
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calling
X (&) '
Qs b)) = Dluvt) s (131)

For such amplitudes, the system of integral equation reduces to

y
@MUH: gﬂ ;7/)( D«Hj&/a(/p /\//LW”’/’”(/ ( (1+x) + 5Vt f)&(a”f)_
1 ) 16 ﬂﬂﬁy(b+w, @va@@VO]

Ae)+1 ([ oty ot Kleve v/ 58 ) > (142)
Q(uvt‘/ __jj/ j v ¢( &)

6o (u fert) b b %)

{
@(UU(L) = ‘/Z/%/o/)(xo((é’)/ 940/& Z}//(U Sk, l«/)( éj[(”"(”‘x)'ff[/;)%(ulbllv—
/ (V+
’ _ i) Pt ’5)]
/
- 6: 9(((’}‘}-' 0/(/ %,’/((u/‘u-; L{,I’/,/K/’LL} ’ L '
@(Wﬁ— /723 K ‘ Q( vt (14b)
o

b2 (v et

The possibility of splitting the system of inltegral equations evidently
follows from a symmetry of the problem, whose physical meaning we shall

discuss later.

Let us refer with a + or - 1index to the solution of the systems
(14a) and (14b) respectively, and let us define
-\

C,? + d, @(“"é} D(E’[‘)
PNz ) T Qs g
A~ . (15)
A A, d)?_(wré) ; A (&)

Q(S(Av/‘): (74 = @(HU(—)
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We note that the system (1l4a) converts into (14b) for Vi = -Vt ana

vice versa. Therefore the solutions will be related by

Ave) = O T-ve) ad ol (Ug) = o (V) (16)

Besides, the kernels of the integral equations are real except for the
V/t terms. Therefore if é?'( V3) is a solution of the type (+),
52*({[€) is a solution of the type (-). As a consequence, for 1t
negative, we shall have in general pairs of complex conjugate (equally

dominant) trajectories of the form

O(thé-/: O('({“)J'O(z(f/l/?
X
o WD) = Ker - A VE

(17)

Eq. (17) contains the Gribov result. In fact, real trajectories in the
bound state region (% ) 0) implyo("1 and ;ﬁzzreal and the two complex
conjugate trajectories coincide for +t=0. Betore discussing the physical
meaning of our result, we shall obtain the explicit soclution of the

\ +
systems (l4a) and (l4b) for o in the weak coupling limit Gg -3 0.

ITI. THE WEAK COUPLING

3)

As discussed in Ref. ; the weak coupling limit can be obtained by

considering the kernel of Egs. (14) at its value for x=0. To begin with,
we want to stress the fact, already pointed out in Ref. 3), that the

weak coupling limit of our equations for the asymptotic absorptive ampli-
tude just coincides with the sum of the asymptotic perturbative expressions

for the ladder diagrams (or rather for the imaginary part of them) of
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Fig. 2. 1In the general strong coupling case treated before, due to the
higher multiperipheral graphs of Fig. 2, it is no longer true that the
asymptotic behaviour of the sum is equal to the sum of the asymptotic

behaviours.

In the weak coupling limit the system (14) reduces to :

G =9 =0
&ty oo b, a 0 A+ Ve (PR
Dluvge O3 //f/a/ K oilont) (s § VE) Bt

u+/a)[/.¢l«/ (18)

¢({/{U([)"$2 / f’/UO/I//KM V,llbf/,l()(/u,, f%)ﬂ(u/y%/
1603 ot =4t (i) % v

From the explicit expressions for jQ and K given in (8) and (lO), it
appears that both XK(uv,ulv',0;t) and f’@hvguﬁv',oyw do not depend on
u and v, so that also the solutions of (18) shall not depend on such

variables, i.e.,

Q(“"'A}: (?{‘}
Plavt) = C (& (19)

Defining

Fit)= / detle’ Kow uivloit) _ 2 é‘;( — j%AWM /
- wl) )
"’ {(ﬁ‘/ ) zﬂcz‘u(w/«)]f/a

F((L/____‘_ Ay’ /(/Ul/,h,VOZL/ ule _-’? (w H()ZO)
2T () (v ) ¢ 11 Ojuﬁ

due to the homogeneity of Egs. (18), we obtain

o((é):-/+,7? [ R + %?(ﬁmﬂ—@u)]

16773

(21)
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1l.

The coefficients C (t) and C (t) can be obtained by normalizing to
the asymptotic expression of the first peripheral term (4th order)°

This term can easily be obtained by replacing LZj by its Born approxima-
tion -~ 11 Gg(Jks'»sO) in the 1.h.s. of Eq. (9) and by performing
then the linear combinations anslogous to (1%). By comparing then with

Eq. (15), taking into account (19) and (21)9 we would obtain

— +

o\
Clor= ACoV = E (r050)] (2

/57

Comparing (21) with (22)9 it appears that here, as in the scalar case,
the Regge trajectory for o(%t) + 1 and the energy independent coeffici-
ents d%ﬁ) are proportional to each other in the weak coupling limit.

It is interesting to note that in such a limit the asymptotic behaviour
of the amplitude is completely independent of the mass |/g; of the

exchanged particle (i.e., the range of the potential).

By comparing (20) with the general form (17), we see that in the
weak coupling limit, the coefficients O(l(t) and sz(t) are indeed
real, so that the trajectories are complex conjugate of each other for
t £ 0, coincide at =0 and are real and unequal for +t > 0. The
reality of the coefficients imply that the equal dominant complex

conjugate trajectories are related among them by c(+( Vi) =" (- /F).

A recent letter by Gell-Mann and Goldberger 4) discussed (but did
not test) the possibility that the nucleon itself lies on a Regge
trajectory, in perturbation theory. This requires that there be
radi ative corrections to the backward pion-nucleon scattering amplitude
which behave as so when s 1is large. We have discussed only radiative
corrections behaving as s ;7 1in effect we assume that the nucleon pole
is a fixed pole with o =0, and the trajectory we have computed is the

one with of — -1 as Gg —r O.



1l2.

IV. DISCUSSION OF THI RESULTIS

Eq. (17) shows that the spinor character of the problem leads
necessarily to two types of trajectories, A’ and o ~; complex
conjugate of each other and showing a Vst singularity. 1In order to
discuss the physical meaning of this result, let us obtain the physical
on the mass shell amplitudes, restricting to the dominant asymptotic
solutions of (14). On the mass shell the amplitudes Cj(3 ana CZ#
of Bq. (3) do not contribute; +the absorptive parts of the usual
amplitudes A and B Dbeing given by (4). From (11), (13) and (13'),
we have that, asymptotically,

A= L Gt pimié) e (o B (it

Uk
~ ~ R \
C{,/S/"/u/)"“’7)'/)*— Q/z/s/,’/‘i*’”"/ /__/ (23)
2 Ve
where we remember that C?l and 6?2 - defined in (13’) - are given

by the solutions of the systems (1l4a) and (14b) respectively.

As we discussed in Section II, in the diffractive t < O region,
— S
dist) = Qs E)

In order to calculate the real parts of A and B, we can write for
them fixed +  dispersion relations. Or, equally well, we can write

the dispersion relations for the amplitudes

@(gé) = /4(“4/-? /(/7»7/“) B(Slé}

/5'\@0 Awt) - VEer) BEY

(24)

N “

whose discontinuities are just é?l and 5?2 respectively.
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The absorptive parts we have calculated before are those for s
positive and big, being clear that the multiperipheral graphs of Fig. 2
do not contribute to the negative s cut. We shall discuss later the
possible multiperipheral model for such a contribution and its implica-
tion. Let us consider for the moment the simple case in which we
consider only the positive s cut as given by (13'). We can then
easily obtain the asymptotic behaviour for ReA and ReB for small
negative t and large positive (asymptotic NN —>7/) or negative

s (backward 7"N scattering) +to be the following

*
L WE) +

&A:—M @,(’[‘)S 604%/70/\!@/4- c .cC.
2 U

£ L) (25)
@@:_Mm@ﬂxﬁ@ + <.c.
2 UVF |

Let us now understand the physical reason due to which the linear
combination of amplitudes of Eq. (13) splits into two systems of
integral equations. We realize now that the amplitudes Q?i and ‘?E
defined in (24) are just proportional to the usually defined non-
covariant amplitudes fl and f2 5) which, in the t channel, have

*
the following partial wave decomposition )

*
) E  and @t are the c.m. nucleon energy and scattering angle

in the t channel, respectively, given by

2 1 (l_
E: é‘*w 'Z Cm‘@é:‘_ I"f’ 7 g 2 2 2
VE 7 /("""’27”{) ‘vz/qw
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P [HM S-(sé) 2 V(J'/‘H’Df’(@é) 7%2” /D/ (COOQL)
7 '

P 7%
/
= _,Qw sé 2 Le (@9&)- }7{@‘/ P(C‘wéz) (26)
3 Ve 7T T JT T4
where

g T J? | (27)

Ci; being the usual 7 N phase shifts for total angular momentum J
and X?_J t Yo,

If we would perform over the expressions of Eqg. (26) the usual Regge
procedure of converting the sum in an integral and then consider the
asymptotic behaviour coset—écn we could see that asymptotically, and

up to relative order Vs,

/ o
, oC S

: (28a)
/?"0

imply a family of bound states with -é7= J - Y2 for J= ol + +.

(- -
/ < gp( (28Db)
e )

imply a family of bound states with -47= J + Y2 for J= o + %

From the proportionality of fl and f with f?i and j?;, we can

2
immediately relate our solution o<+ as the continuation to negative 1
of the trajectory of the family of bound states with .L-P+ oy and our

c(~ to those with J—V-—.
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We understand therefore that the amplitudes which decouple our
system of integral equations and have complex conjugate asymptotic
behaviour for +t { 0, are just those amplitudes that, when considered
on the mass shell and decomposed into partial waves in the t channel
(t > 0), have for a given angular momentum J a well defined parity

(i.e,, well defined angular momentum) for cos Gt - @ .

We understand therefore the following fact. The translational

S X (%)

the correspondent, in the diffraction region, of the rotation symmetry

symmetry which allows us to select the asymptotic behaviour is
in the bound state region. Therefore, here - as in the scalar case -
its eigenvalue o{ corresponds to the total angular momentum J for
bound states. When J is selected, the subsequent choice of the parity
(choice of X? ) ccrresponds in the diffraction region to the diagonal-

ization of system (14) for a particular o{ o

Summarizing the preceding discussion, we have shown that there exist
two different Regge pole trajectories for a fermion problem. In the
diffractive region they are complex conjugate of each other and give the
asymptotic behaviour of the fermionic exchange scattering amplitudes.
For t > 0 their intersection with an integer value of o( represents
a bound state with J=p{+¥2 and f7=d_ if the trajectory is the (+)
and X =o{+1 if it is the (=) one.

Our trajectories do not possess a signature character or, if we
prefer, the trajectories corresponding to the opposite signatures are
degenerate. This is due to the fact, already pointed out before, that
we have not considered the imaginary amplitudes for negative s (back-
ward TN scattering) or, in a different language, that we have
considered no exchange potential. In fact, the imaginary part for
backward I N scattering would appear naturally in our model from

multiperipheral graphs of the type
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in which the nucleon itself acts as a potential and which we have omitted

for the sake of simplicity.

It can easily be seen that the inclusion of such an imaginary part
for s £ 0 would split the trajectories of different signature.
Indeed one can obtain two independent systems of integral equations in
which the kernels (Born approximations) are the sum and the difference,
respectively, of kernels corresponding to the two multiperipheral

diagrams.

Our interest in the problem came mainly from discussions aroused
in the Theoretical Study Division on high-energy physics at CERN; we
thank therefore the participants and, particularly, Drs. Fubini,
Kinoshita and Martin. We are alsc indebted to Drs. V.N. Gribov and
I.Ta. Pomeranchuk for an interesting discussion on the argument to

which this paper is referred.
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